两种氨基酸r
四种DNA字母要编码20种氨基酸。绝不可能是一对一编码,也不可能是二对一编码,因为两个字母最多只能组成16种组合(4×4)。因此,最低要求是三个字母,也就是DNA序列里面最少要有三个字母对应到一个氨基酸,被称为三联密码,后来被克里克和西德尼·布伦纳证实。
但是这样看起来似乎很浪费,因为用四种字母组成三联密码,总共可以有64种组合(4×4×4),这样应该可以编码64个不同的氨基酸,那为什么只有20种氨基酸呢?一定有一个神奇的答案来解释为什么4种字母,3个一组,拼成64个单词,然后编码20种氨基酸。
1952年,沃森就曾写信告诉克里克:“DNA合成信使RNA(mRNA), mRNA合成蛋白质。”克里克开始研究这一小段mRNA的字母序列,如何翻译成蛋白质里面的氨基酸序列。他认为mRNA可能需要一系列“适配器”来帮助完成翻译,每一个适配器都负责携带一个氨基酸。当然每一个适配器一定也是RNA,而且都带有一段“反密码子”序列,这样才能和mRNA序列上的密码子配对。
适配器分子也由RNA分子组成。它们现在叫作“转运RNA”或tRNA。现在整个工程变得有点像乐高积木,一块块积木接上来又掉下去,一切顺利的话,它们就会这样一个接一个地搭成精彩万分的聚合物。
随着实验技术进步而且越来越精密,在20世纪60年代中期许多实验室陆续解开了序列密码。然而经过一连串不懈的译码工作后,大自然却好像随兴地给了个潦草结尾,让人既困惑又扫兴。遗传密码子的安排一点也不具创意,只不过“简并”了(意思就是说,冗余)。有三种氨基酸可对应六组密码子,其他的则各对应一到两组密码子。每组密码子都有意义,还有三组的意思是“在此停止”,剩下的每一组都对应一个氨基酸。这看起来既没规则也不美,根本就是“美是科学真理的指南”这句话的最佳反证。甚至,我们也找不出任何结构上的原因来解释密码排列,不同的氨基酸与其对应的密码之间似乎并没有任何物理或化学的关联。
克里克称这套让人失望的密码系统为“冻结的偶然”,而大部分人也只能点头同意。他说这个结果是冻结的,因为任何解冻(试图去改变密码对应的氨基酸)都会造成严重的后果。一个点突变也许只会改变几个氨基酸,而改变密码系统本身却会从上到下造成天大灾难。就好似前者只是一本书里无心的笔误,并不会改变整本书的意义,然而后者却将全部的字母转换成毫无意义的乱码。克里克说,密码一旦被刻印在石板上,任何想改动它的企图都会被处以死刑。这个观点至今仍有许多生物学家认同。
氯氨酮 nmda受体
7月28日,《自然》在线发表题为《氯胺酮作用于人源NMDA受体的结构基础》的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、神经科学国家重点实验室、上海脑科学与类脑研究中心研究员竺淑佳研究组与中科院上海药物研究所研究员罗成研究组合作完成。研究通过冷冻电镜解析了NMDA受体结合快速抗抑郁药氯胺酮的三维结构,确定了氯胺酮在NMDA受体上的结合位点,并进一步通过电生理功能实验和分子动力学模拟,阐明了氯胺酮与NMDA受体结合的分子基础。
传统抗抑郁药多数作用于单胺能神经系统,需要持续用药数周甚至数月后才能起效,并且对三分之一的难治性抑郁症患者没有治疗效果。氯胺酮作为能快速起效的新型抗抑郁药,一剂亚麻醉剂量用药几小时内就能显著改善患者的情绪低落,自我评价低等负面症状,甚至减弱患者自杀意念,尤其对难治性抑郁症有治疗效果。但是,氯胺酮可造成分离性幻觉、成瘾等副作用,限制了其临床应用。因此,研发副作用更小且能快速起效的新型抗抑郁药是未来的研究方向。
已有研究显示,氯胺酮作为大脑内重要的谷氨酸门控离子通道NMDA受体的阻断剂,可通过抑制NMDA受体通道活性,参与突触传递及突触可塑性信号通路的调控,进而恢复慢性压力导致的皮层与海马区域的突触损伤。因此,解析氯胺酮在NMDA受体上的结合位点,并阐明氯胺酮与NMDA受体之间如何相互作用,对基于氯胺酮/NMDA受体复合物结构设计新型抗抑郁药的研究具有重要意义。竺淑佳研究组长期从事NMDA受体结构与功能的系列研究,在NMDA受体家族不同亚型的三维结构、构象动力学、变构调节、药理学和门控开放机制等领域取得系列成果(Nat Struct Mol Biol 2013; PNAS 2014; Cell 2016; Cell Rep 2018; Neuron 2021)。
该研究中,科研人员聚焦在成年哺乳动物脑内表达最丰富的两种亚型GluN1-GluN2A和GluN1-GluN2B NMDA受体上,前期利用真核细胞表达系统进行了大量蛋白表达与纯化的条件摸索。在得到稳定的NMDA受体蛋白后,科研人员结合冷冻电镜技术解析了氯胺酮结合的人源GluN1-GluN2A和GluN1-GluN2B亚型NMDA受体的三维结构。在NMDA受体的跨膜区发现了氯胺酮的电子云密度图,进而确认了氯胺酮的结合位点在离子通道的门控与选择性过滤器中间的空腔内。空腔顶部和底部分别由极性氨基酸苏氨酸和天冬酰胺组成,空腔中部由疏水氨基酸颉氨酸和亮氨酸组成。科研人员通过点突变筛选及电生理实验鉴定了GluN1-N616及GluN2A-L642(同源GluN2B-L643)这两个关键氨基酸是参与氯胺酮结合的关键氨基酸。这两个位点的突变会显著影响氯胺酮抑制NMDA受体通道活性的效力,证明这两个关键氨基酸在氯胺酮抑制通道活性过程中发挥重要作用。为进一步解析受体与氯胺酮之间的相互作用,科研人员进行了分子动力学模拟。模拟结果发现,GluN2A-L642对氯胺酮结合能的贡献最大,其疏水侧链可与氯胺酮形成疏水作用,并发现了GluN1-N616会与氯胺酮形成氢键作用。
该研究通过电镜发现并确认了氯胺酮在NMDA受体上的结合位点,揭示GluN1-N616的氢键作用和GluN2A-L642的疏水作用,在氯胺酮稳定结合在NMDA受体的通道空腔内并阻断通道的过程中起关键作用。研究还进一步探讨了手性异构体R-氯胺酮和S-氯胺酮在结合和分子机制上的异同。研究中的系列发现为基于NMDA受体结构设计新型抗抑郁药的研发提供了基础。
研究工作得到中科院生物物理研究所生物成像中心的支持,得到国家自然科学基金委员会、中科院和上海市的资助。

(A)结合氯胺酮的人源GluN1-GluN2A NMDA受体冷冻电镜三维结构。(B)氯胺酮结合位点空腔里的关键氨基酸。(C)分子动力学模拟过程中氯胺酮周围氨基酸的结合能贡献和氢键形成的频率。(D)野生型和关键位点突变的NMDA受体的氯胺酮剂量效应曲线。

来源: 脑科学与智能技术卓越创新中心
研究揭示抗抑郁药氯胺酮靶向人源NMDA受体的分子机制,氯氨酮 nmda受体
生物学家劳伦斯·赫斯特和斯蒂芬·弗里兰在20世纪90年代末把天然基因密码和计算机随机产生的几百万组密码拿去比对,结果轰动一时。他们想知道,如果发生点突变这种把一个字母换掉的变异,哪一套密码系统能保留最多正确的氨基酸,或将它代换成另一个性质相似的氨基酸。
结果他们发现,天然的基因密码最经得起突变的考验。点突变常常不会影响氨基酸序列,而如果突变真的改变了氨基酸,也会由另一个物理特性相似的氨基酸来取代。据此,赫斯特与弗里兰宣称,天然的遗传密码比成千上万套随机产生的密码要优良得多。它不但不是大自然密码学家愚蠢而盲目的作品,而是万里挑一的密码系统。
天然的三联基因密码的第一个字母都有特定的对应方式。举例来说,所有以丙酮酸为前体合成的氨基酸,它们密码的第一个字母都是T。所有由α-酮戊二酸所合成的氨基酸,其三联密码第一个字母都是C;所有由草酰乙酸合成的氨基酸,第一个字母都是A;最后,几种简单前体通过单一步骤所合成的氨基酸,第一个字母都是G。
三联密码的第二个字母和氨基酸是否容易溶于水有关,或者说和氨基酸的疏水性有关。亲水性氨基酸会溶于水,疏水性氨基酸不会溶于水,但会溶在脂肪或油里,比如溶在含有脂质的细胞膜里。所有的氨基酸,可以从“非常疏水”到“非常亲水”排列成一张图谱,而正是这张图谱决定了氨基酸与第二个密码字母之间的关系。疏水性最强的六个氨基酸里有五个,第二个字母都是T,所有亲水性最强的氨基酸第二个字母都是A。介于中间的有些是G有些是C。
三联密码的第三个字母不含任何信息,不管接上哪一个字母都没关系,这组密码子都会翻译出一样的氨基酸。以甘氨酸为例,它的密码子是GGG,但是最后一个G可以代换成T、A或C。
第三个字母的随机性暗示了一些有趣的事情。二联密码可以编码16种氨基酸。如果我们从20个氨基酸里拿掉5个结构最复杂的(剩下15个氨基酸,再加上一个终止密码子)这样前两个字母与这15个氨基酸特性之间的关联就更明显了。因此,最原始的密码可能只是二联密码,后来才靠“密码子捕捉”的方式成为三联密码,也就是各氨基酸彼此竞争第三个字母。
第一个字母和氨基酸前体之间的关系直截了当,第二个字母和氨基酸的疏水性相关,第三个字母可以随机选择。这套密码系统除了可以忍受突变,还可以降低灾难发生时造成的损失,同时可以加快进化的脚步。因为如果突变不是灾难性的,那应该会带来更多的好处。